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Abstract— Cloud computing has become ubiquitous in the 
corporate world. Its effectiveness in reducing cost while 
providing a collaborative platform for information processing 
has helped overhaul the traditional information storage 
systems and overcome the faults. But, cloud storage involves 
sharing data with a third-party and security becomes a vital 
issue. Organizations cannot afford any confidential data to be 
stolen and in the case that happens, the damage could be 
irreparable. In this paper, various problems and solutions 
regarding cloud security are discussed. An overview of cloud 
security is given before dealing with specific issues dealt by 
organizations and solutions to those problems.  
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I. INTRODUCTION 

Cloud computing is a phrase used to describe a variety of 
computing concepts that involve a large number of 
computers connected through a real-time communication 
network such as the Internet. Instead of storing/processing 
data, creating and running applications on a local machine, 
cloud computing removes the tedious tasks and gives the 
user convenient access to perform his operations. With the 
increase in internet speeds around the world, the 
prominence of cloud has rapidly risen. Security of data and 
applications has become a major issue with the increase in 
scale of clouds. Cloud Security is a sub-domain of cloud 
computing that refers to a broad set of policies, 
technologies, and controls deployed to protect data, 
applications, and the associated infrastructure of cloud 
computing.  

Cloud security architecture is effective only if the correct 
defensive implementations are in place. An efficient cloud 
security architecture should recognize the issues that will 
arise with security management. The security management 
addresses these issues with security controls. These controls 
are put in place to safeguard any weaknesses in the system 
and reduce the effect of an attack. While there are many 
types of controls behind a cloud security architecture, they 
can usually be found in one of the following categories –
 Deterrent, Preventive, Corrective  and  Detective controls.  

II. PRIVACY AND SECURITY CONCERNS

In general, the security and privacy issues face by 
outsourcing data to cloud can be categorized as below: 

A. Identity Management 

Every enterprise will have its own identity management 
system to control access to information and computing 
resources. 

B. Physical & Personnel Security 

Providers ensure that physical machines are adequately 
secure and that access to these machines as well as all 
relevant customer data is not only restricted but that access 
is documented. 

C. Availability 

Cloud providers assure customers that they will have 
regular and predictable access to their data and 
applications.  

D. Application Security 

Cloud providers ensure that applications available as a 
service via the cloud are secure by implementing testing 
and acceptance procedures for outsourced or packaged 
application code. It also requires application 
security measures be in place in the production environment. 

E. Privacy 

Finally, providers ensure that all critical data (credit card 
numbers, for example) are masked and that only authorized 
users have access to data in its entirety. Moreover, digital 
identities and credentials must be protected as should any 
data that the provider collects or produces about customer 
activity in the cloud.  

F. Legal Issues 

In addition, providers and customers must consider legal 
issues, such as Contracts and E-Discovery, and the related 
laws, which may vary by country. 

III. CURRENT ISSUES AND PROPOSED SOLUTIONS

From here on, three specific and complex issues faced by 
organizations when deploying information to the cloud are 
dealt with in detail. These issues are – Data ownership and 
group management, Outsourcing data to a cluster of 
machines, Outsourcing social networks to cloud.  
A. Data Ownership and Group Management 

Data storage is one of the services offered by cloud 
providers. Consider the practical data application of a 
company. A company allows its staffs in same group or 
department to store and share files in the cloud. This 
relieves the staff from maintaining local storage. However, 
issues like confidentiality of data, privacy of users are under 
threat. Cloud providers are generally perceived as 
untrustworthy by users. Data privacy can be implemented 
by encrypting data before they are stored in the cloud. 
Identity privacy must not be absolute as it may be misused. 
Another feature that must be implemented is multiple-
ownership of data i.e. any member of a group can modify 
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the data that belongs to the group. Groups are also dynamic 
in nature. Users can leave groups and new users may 
replace them. Handling of data sharing becomes extremely 
complex in such situations. To handle all of the conditions 
mentioned above, a system is proposed for multi-
owner data sharing scheme for dynamic groups in cloud, 
whose features are:  

1. Any user in any group can securely share data with 
others in the untrusted cloud. 

2. New users can access data belonging to the group 
without contacting other participants. 

3. Confidentiality of data and anonymity of users are 
preserved. In case of identity disputes, group 
manager can reveal the real identities. 

4. Effectiveness of scheme is realized by providing 
extensive simulations. 

1) Terminology: Bilinear Maps: Let G1 and G2 be an 
additive cyclic group and a multiplicative cyclic 
group of the same prime order q, respectively [11]. 
Let e :G1xG1->G2 denote a bilinear map constructed 
with the following properties: 
1. Bilinear: For all a,b ε Zq

* and P,Q ε G1, 
e(aP,bQ)=e(P,Q)ab 

2. Nondegenerate: There exists a point P such 
that e(P,P)≠1 

3. Computable: There is an efficient algorithm to 
compute e(P,Q) for any P,Q ε G1. 

Group Signature: Group signatures allow any 
member of the group to sign messages while keeping 
the identity secret from verifiers. A group signature 
scheme is used to provide anonymous access control in 
the proposed system.  

Dynamic Broadcast Encryption: Broadcast 
encryption allows a broadcaster to transmit encrypted 
data so that only a privileged subset can decrypt the 
data. Dynamic broadcast encryption allows the group 
managers to dynamically include new members while 
preserving previously computed information. The 
dynamic broadcast encryption technique introduced 
here is based on bilinear pairs. 

2) System Model: There are major entities involved in 
the proposed system – Cloud, Group Manager and 
Group Members. Cloud is operated by CSPs and 
provides storage capabilities. But the cloud is not 
trusted by the users. Group manager take charge of 
system parameters, user registration, revocation of 
users and revealing the real identity of a disputed 
data owner. Group members are a set of registered 
users that store their private data into the cloud 
server and share them with others in their group. 

 
Fig 1.  Overview of the system 

3) Proposed Model: The various details of the 
proposed scheme are included under System 
Initialization, User revocation, File generation, File 
access and traceability. 

System Initialization: The group manager is responsible 
for system initialization as follows: 

1. Generating a bilinear map group system 
S=(q1,G1,G2,e). 

2. Selecting two random elements H, H0 ε G1, 
along with two random numbers ε1,ε2  ϵ Zq

*, 
computing U=ε1

-1H and V=ε2
-1H ϵ G1 such that 

ε1.U=ε2.V. In addition, the group manager 
computes H1, H2 where H1=ε1H0 and H2=ε2H0 ϵ 
G1. 

3. Randomly choosing two elements P,G ϵ G1 and 
a number γ ϵ Zq

* and computing W=γ.G and 
Z=e(G,P), respectively. 

4. Publishing the system parameters including 
(S,P,H,H0,H1,H2, U, V ,W, Y ,Z, f, f1, Enck()} 
where f is a one-way hash function: {0, 1}*-> 
Zq , f1 is hash function: {0, 1}*-> G1 and Enck() 
is a secure symmetric encryption algorithm with 
secret key k. 

  User Registration: If a user i wants to register with 
identity IDi, the group manager randomly selects a number 
xi ϵ Zq

* and computes Ai, Bi as the following equation: 
 

 
Fig. 2 Equations for parameters 

 
(xi,Ai,Bi) is the private key. 
User revocation:  

User revocation is performed by maintain a public 
Revocation List (RL). The revocation list is characterized 
by a series of time stamps (t1 < t2 ,... tr). Let IDgroup denote 
the group identity. The tuple (Ai, xi,ti) represents that user i 
with the partial private key (Ai, xi) is revoked at time ti. 
P1,P2.. Pr and Zr are calculated by the group manager with 
the private secret γ as follows 

 
Fig 3. Revocation List 
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In addition, RL is bounded by a signature sig(RL) to 
declare its validity. The signature is generated by the group 
manager with the BLS algorithm, i.e. sig(RL)=γf1(RL). The 
group manager then migrates RL to cloud for public use. 

 
File Generation: 
The process of storing and sharing a file in the cloud 
consists of the following operations performs the following 
operations: 

1. Getting the revocation list from the cloud. In this 
step, the member sends the group identity IDgroup as a 
request to the cloud. Then, the cloud responds the 
revocation list RL to the member. 

2. Verifying the validity of the received revocation list. 
First, checking whether the marked date is fresh. 
Second, verifying the contained signature sig(RL) by 
the equation e(W,f1(RL)) =e(P,sig(RL)). If the 
revocation list is invalid, the data owner stops this 
scheme. 

3. Encrypting the data file M. The encryption process 
has two cases:  

a. There is no revoked user in the RL:  
i. Select unique data file identity IDdata. 
ii. Choosing a random number k ϵ Zq

*. 
iii. Computing the parameters C1,C2,K,C 

as the following equation: 

 
Fig 4. Keys for encryptions 

b. There a r revoked users in the RL:  
i. Select unique data file identity IDdata. 
ii. Choosing a random number k ϵ Zq

*. 
iii. Computing the parameters C1,C2,K,C 

as the following equation 
 

 
Fig 5. Computing ciphertext 

c. Selecting a random number t and 
computing f(t). The hash value will be used 
for data file deletion operation. In addition, 
the data owner adds f(IDdata,t) into his local 
storage. 

d. Message format for uploaded file. 
 

 
Fig 6. Message Format for Uploading Data 

 
e. Uploading the data shown into the cloud 

server and adding the IDdata into the local 
shared data list maintained by the manager. 
On receiving the data, the cloud first 

checks its validity. If the algorithm returns 
true, the group signature is valid; 
otherwise, the cloud abandons the data. In 
addition, if several users have been revoked 
by the group manager, the cloud also 
performs revocation verification. Finally, 
the data file will be stored in the cloud after 
successful group signature and revocation 
verifications. 

File Deletion: 
This operation consists of following actions:  

1. Obtaining the tuple (IDdata,t) from the data owner’s 
local storage.  

2. Invoking group signature algorithm on (IDdata, t).  
3. Sending (IDdata, t) and the signature as a delete 

request to cloud.  
4. Upon receiving the delete request, the cloud calls 

the signature generation algorithm and the 
revocation verification algorithm to verify the 
group signature.  

5. The cloud will delete the file if f(t) equals the hash 
value contained in the file. 

File Access: 
To access the contents of a shared file, a member has to do 
the following actions:  

1. Users uses his private key to compute a signature s 
on the message (IDgroup,IDdata,t). The users sends 
this message as a request to cloud server. On 
receiving the request, the cloud server verifies the 
signature and performs revocation verification. 
After successful verification, the server returns the 
data file and RL to server.  

2. Checking the validity of revocation list, similar to 
step 2 of file generation phase.  

3. Verifying validity of file and decrypting it. This 
operation can be divided into 3 cases based on the 
time stamp tdata:  
a. Case 1 (tdata<t1). There is no revoked user 

before data file is uploaded 
i. Check group signature. If false, user stops 

this operation.  
ii. Using partial private key (A,B) to 

compute k=e(C1,A)e(C2,B) 
iii. Decrypting the ciphertext C with the 

computed key K.  
b. Case 2 (ti<tdata<ti+1). The case indicates that i 

users have been revoked since data file is 
uploaded 

i. Check group signature.  
ii. Input A1,A2,..Ai to Revocation 

Verification algorithm. If algorithm 
returns invalid, stop operation. 

iii. Calculating decryption key 
K=e(C1,Ai,r)e(C2,B) 

iv. Decrypt ciphertext with key K.  
c. Case 3 (tr<tdata). This indicates that  r users 

have been revoked before the data file is 
uploaded. 
i. Verify group signature using group 

signature algorithm.  
ii. Input A1,A2,...Ar to RV algorithm. If 

algorithm returns invalid, terminate 

Shiv Shankar Barai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4110-4117

www.ijcsit.com 4112



operations. 
iii. Calculating the decryption key 

K=e(C1,Ar,r)e(C2,B). 
iv. Decrypt the ciphertext C with the key K. 

 
Traceability:  

When a dispute occurs on the issue of the data owner, 
the group manager performs the tracing operation to 
identify the real identity of the data owner. Given a 
signature s=(T1,T2,T3,C,S1,S2,S3,S4,S5), the group manager 
employs his private key to compute Ai=T3-(ε1.T1+ε2.T2). 
Using Ai , the group manager can identify the real owner 
from the user list. 

B.  Outsourcing Data to a Cluster of Machines 

In the problem privately outsourced computation client 
wishes to delegation of a function f on a private input x to 
an untrusted worker without the latter learning anything 
about x and f(x). The problem of privately outsourcing 
computation to a cluster of machines which occurs when 
the computation is beyond the capabilities of single 
machine, e.g., to analyze large scale networks, is considered. 
Here the computations are performed by large scale clusters 
of workers. 

This problem is addressed by introducing the notion of 
parallel homomorphic encryption scheme introduced in [1]. 
Parallel Homomorphic Encryption is an encryption 
technique that support computation over encrypted data via 
evaluation algorithms that can be efficiently executed in 
parallel. The delegated PHE technique hides the function 
being evaluated. MapReduce model of parallel computation 
shows how to construct PHE schemes that supports various 
MapReduce operations on encrypted datasets. The PHE 
schemes are two new constructs of randomized reductions 
for univariate and multivariate polynomials. Here the 
privacy of the input is guaranteed even if the adversary sees 
all the client’s queries. 

Randomized reductions for univariate polynomials is 
information-theoretically secure and is based on 
permutation polynomials, whereas our reduction for 
multivariate polynomials is computationally secure under 
the multi-dimensional noisy curve reconstruction 
assumption. 

For our purposes, the cluster of workers are considered 
as a system composed of w workers and one controller. 
Given some input, the controller generates n jobs (where 
typically n >> w) which it distributes to the workers. Each 
worker executes its job in parallel and returns some value to 
the controller who then decides whether to continue the 
computation or stop it. 

In this work, the client encrypts x and sends the 
ciphertext and f to the controller. Using the ciphertext, the 
controller generates n jobs that it distributes to the workers 
who execute their jobs in parallel. When the entire 
computation is finished, the client receives a ciphertext 
which it decrypts to recover f(x). In delegated PHE the 
function f is hidden. It includes an additional token 
generation algorithm that takes as input f and output a token 
T that reveals no information about f but that, nonetheless, 
can be used by the evaluation algorithm to return an 
encryption of f(x). 

Applications of PHE: It is used for the setting of 
outsourced computation where a weak computational 
devices wishes to make use of the resources of a more 
powerful server. Using this scheme a client can encrypt a 
large database during an offline phase and then have the 
workers evaluate different functions on its data during the 
online phase. The client does not need to know the 
functions it want to evaluate during the online phase at the 
time of encryption. 

Parallel computation: The specifics of how the 
computation and communication between processors are 
organized leads to particular architectures, each having 
unique characteristics in terms of computational and 
communication complexity. This has motivated the design 
of several architecture independent models of parallel 
computation, including NC circuits, the parallel RAM 
(PRAM) and Dyrad Models. Arithmetic PHE scheme yields 
an NC-parallel HE scheme for any function f in NC. 

Applications to cloud based cluster computing: A 
MapReduce algorithm is run by an execution framework 
that handles the details of distributing work among the 
machines in the cluster, balancing the workload so as to 
optimize performance and recovering from failures. The 
most popular framework is Hadoop which is open source 
and used by hundreds of large organizations including 
Amazon, EBay, Facebook, Yahoo, Twitter and IBM. 

Recent trend in cluster computing has been to make use 
of cloud infrastructures such as Amazon’s Elastic 
MapReduce, Cloudera’s Hadoop distribution and Microsoft 
Azure Hadoop service. With such services, a client can run 
a MapReduce algorithm on massive datasets in the cloud. 
While these services allow clients to take advantage of all 
the benefits of cloud computing, they require the client to 
trust the provider with its data. 

Using an MR-parallel HE scheme a client can maintain 
the confidentiality of its data while utilizing the processing 
power of a third party MapReduce cluster. Of course, the 
client must bear the costs of encryption and decryption 
which for massive datasets can represent a non-trivial 
amount of work. But this cost is dominated by the amount 
of work that is outsourced. All of our constructions, 
encryption can be performed in a streaming manner. This 
means that even if the data is very large, it can still be 
encrypted by a weak client albeit rather slowly. 

1) Terminology: MapReduce: It offers a simple interface to 
design and implement parallel algorithms and an 
execution framework that handles the details of 
distributing work among the machines in the cluster, 
balancing the workload so as to optimize performance 
and recovering from failures. A MapReduce program is 
composed of a Map() procedure that performs filtering 
and sorting and a Reduce() procedure that performs a 
summary operation. 

Homomorphic Encryption: Homomorphic 
encryption is a secure probabilistic encryption scheme 
allowing the server to perform computations on 
encrypted data with the final result decrypted at the 
proxy. An encryption scheme is Homomorphic if it 
supports computation on encrypted data in addition to 
the standard encryption and decryption algorithms it 
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also has an evaluation algorithm that takes as input an 
encryption of some message x and a function f and 
returns an encryption of f(x) . 

Randomized Reductions: Randomized reductions 
transforms the input in to n pairs of output such that 
upon decrypting the output we get original message. RR 
guarantees that no information about the input can be 
obtained. 

 
2) Proposed Scheme: MapReduce Parallel homomorphic 

Encryption using Randomized Reductions involves 
MapReduce Algorithm, PHE algorithm and 
Randomized Reduction algorithm.  
Homomorphic Encryption: Let F be a family of n-ary 
functions. A F-homomorphic encryption scheme is a set 
of four polynomial-time algorithms HE = (Gen, Enc, 
Eval, Dec) such that Gen is a probabilistic algorithm 
that takes as input a security parameter k and outputs a 
secret key K; Enc is a probabilistic algorithm that takes 
as input a key K and an n-bit message m and outputs a 
ciphertext c; Eval is a (possibly probabilistic) algorithm 
that takes as input a function f ∈	 F and n encryptions 
(c1,...,cn) of messages (m1,...,mn) and outputs an 
encryption c of f(m1,...,mn); and Dec is a deterministic 
algorithm takes as input a key K and a ciphertext c and 
outputs a message m.  
Map Reduce Algorithm: A MapReduce algorithm Π = 
(Parse, Map, Red, Merge) is executed on a cluster of w 
workers and one controller as follows. The client 
provides a function f and an input x to the controller 
who runs Parse on (f, x), resulting in a sequence of input 
pairs (li, vi)i. Each pair is then assigned by the controller 
to a worker that evaluates the Map algorithm on it. This 
results in a sequence of intermediate pairs {(λj, γj)}j. 
Note that since the Map algorithm is stateless, it can be 
executed in parallel. 
MR – Parallel HE: A private-key MR-parallel F-
homomorphic encryption scheme is a tuple of 
polynomial-time algorithms PHE = (Gen, Enc, Eva, 
Dec), where (Gen, Enc, Dec) are as in a private-key 
encryption scheme and Eval = (Parse, Map, Red, 
Merge) is a MapReduce algorithm, as explained in [2]. 
More precisely we have:  
K ← Gen(1k): is a probabilistic algorithm that takes as 
input a security parameter k and that returns a key K.  
c ← Enc(K,x):is a probabilistic algorithm that takes as 
input a key K and an input x from some message space 
X, and that returns a ciphertext c. We sometimes write 
this as c ← Enc K(x).  
{(li, vi)}i ← Parse(f, c): is a deterministic algorithm that 
takes as input a function f ∈F and a ciphertext c, and 
that returns a sequence of input pairs.  
(λj,γj)j ← Map(l,v): is a (possibly probabilistic) 
algorithm that takes an input pair (l,v) and that returns a 
sequence of intermediate pairs.  
(λ,z) ← Red(λ, P): is a (possibly probabilistic) algorithm 
that takes a label λ and a partition P of intermediate 
values and returns an output pair (λ,z).  

c0 ← Merge(λt,zt)t: is a deterministic algorithm that 
takes as input a set of output pairs and returns a 
ciphertext c0.  
y ← Dec(K,c0): is a deterministic algorithm that takes a 
key K and a ciphertext c0 and that returns an output y.  
This is sometimes written as y ← Dec K(c0).  
We say that PHE is correct if for all k ∈N, for all f ∈Fk, 
for all K output by Gen(1k), for all x ∈	 X, for all c 
output by EncK(x), DecK(Eval(f,c))= f(x). 

3) Procedure: Let HE = (Gen, Enc, Eval, Dec) be a public-
key -homomorphic encryption scheme and let RR = 
(Scatter, Recon) be a C-universal (t,n)-local randomized 
reduction from f to g such that Recon  belongs to F. 
Consider the multi-use MR-parallel C-homomorphic 
encryption scheme PHE = (Gen,Enc, Eval, Dec), where 
PHE.Eval =(Parse, Map, Part, Red, Merge), defined as 
follows: 
 Gen(1k): compute (pk; sk)   HE:Gen(1k). Output 

K = (sk, pk). 
 Enc(K, x): for all i belongs to [#x], compute (si, sti)   

Scatter(xi) and ei   HE:Encpk(sti). Output c = 
 (pk, s1,…,s#x,e1,…,e#x). 
 Parse(f, c): for all i belongs to [#x] and j belongs to 

[n], set li,j := i and vi,j := (f, pk, si[j], ei). Output (li,j, 
vi,j) i,j. 

 Map(l,v): parse v as (f, s, e) and compute a   
HE.Encpk(g(s)). Output n:=l and  w:= (a, e). 

 Red(n, P): parse P as (ar, er)r and compute z   
HE:Eval(Recon, er, (ar)r). Output (n,z). 

 Merge((nt,zt)t):output c’ := (zt)t. 
 Dec(K, c’): for all i belongs to  [#c’], compute 

yi := HE:Decsk(zi). Output y = (y1,….., y#c0 ). 
 

C. Outsourcing Social Networks to Cloud 

Storage of Social network data is one of the important 
services of cloud. Today, many companies publish social 
networks to a third party, e.g., a cloud service provider. 
Hence, preserving privacy when publishing social network 
data is important, with reasons explained in detail in [4]. 
Social networks model social relationships with a graph 
structure using nodes and edges, where nodes model 
individual social actors in a network, and edges model 
relationships between social actors. The relationships 
between social actors are often private, and directly 
outsourcing the social networks to a cloud may result in 
unacceptable disclosures. For example, publishing social 
network data that describes a set of social actors related by 
sexual contacts or shared drug injections may compromise 
the privacy of the social actors involved. A naive approach 
is to simply anonymize the identity of the social actors 
before outsourcing. However, an attacker that has some 
knowledge about a target’s neighbourhood, especially a 
one-hop neighbourhood and the structure of the graph, can 
still re-identify the target with high confidence. This type of 
an attack is termed as 1*-neighbourhood attack. To generate 
an anonymized social network which is secure from such an 
attack, we propose a heuristic indistinguishable group 
anonymization (HIGA) scheme. 
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1) Terminology: 1-neighborhood graph: A graph showing 
a target actors one hop neighbours, i.e., the neighbours 
that are directly connected to the node under 
consideration, using edges. 

1*-neighborhood graph: A 1-neighborhood graph 
where the degrees of the one hop neighbors are known. 

1*-neighbourhood attack: An attack where the 
attacker is assumed to know the degrees of the target’s 
one-hop neighbours, in addition to the structure of the 1-
neighborhood graph. 

Node Indistinguishability: Nodes u and v are 
indistinguishable if an observer cannot decide whether 
or not G∗ u = G∗ v in the original graph G, by 
comparing G∗ u and G∗ v in an anonymized graph G. 

Group Indistinguishability: For a group of nodes g = 
{v|v ∈ V (G)} and |g|≥k if for each pair of nodes {u,v 
|u,v ∈ g}, u and v are indistinguishable in the published 
graph G, group g is an indistinguishable group. 
Probabilistic Indistinguishability: A published social 
network achieves probabilistic indistinguishability, if all 
nodes {v|v ∈ V (G)} can be classified into m ≥ 1 
groups, where each group has the property of group 
indistinguishability. 
 

2) System Model: We consider a system that consists of a 
publisher, a cloud service provider, an attacker, and 
many users. The publisher, such as Facebook or Twitter, 
outsources a social network to a cloud. In our system, a 
social network is modelled as an undirected and 
unlabeled graph. The node identities are assumed to be 
removed. 

The attacker has certain background knowledge about 
the target and he tries to re-identify the target by 
analysing the outsourced social network. To protect the 
privacy of the social actors in the network from the 
attacker, the publisher anonymizes the network before 
outsourcing. 

 

 
 

 
Fig 7: Social network anonymization 
 

3) Proposed Scheme: To generate an anonymized social 
network which is secure from 1*-neighbourhood attack, 
we propose a heuristic indistinguishable group 
anonymization (HIGA) scheme. 
 
 

Our basic idea consists of four key steps: 
1. Grouping 
2. Testing 
3. Anonymization 

    4. Randomization 
 

 
 

 
 

 
 

Fig 8: Analogue of the HIGA scheme 
 

The various details of the proposed scheme are explained 
below: 

 
Grouping: 

We classify nodes whose 1*- neighbourhood graphs 
satisfy certain metrics into groups, where each group size is 
at least equal to k. We group nodes by using the following 
metric: number of one-hop neighbours, in-degree sequence, 
out-degree sequence, total number of edges, and 
betweenness. 

Although other metrics, e.g., closeness centrality and 
local clustering coefficient, also can be used for grouping, 
we only consider the above metrics. The concepts of 
“number of one-hop neighbours” and “total number of 
edges” are easily understood. Therefore, we only provide 
the definitions for the other metrics. 

For a node v ∈ V (G) whose 1*-neighbourhood graph 
Gv* = (Gv,Dv), where Gv = (Vv,Ev), we have the 
following definitions: 

 
 Fig 9: Neighbourhood sequences 
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For a node v, the in-degree sequence is a sequence of in- 
degrees for v’s one-hop neighbours, where the in-degree for 
v’s one-hop neighbourhood u is the number of edges that 
are connected between u and other v’s one-hop neighbours; 
the out- degree sequence is a sequence of out-degrees for 
v’s one-hop neighbours, where the out-degree for v’s one-
hop neighbourhood u is the number of edges that are 
connected between u and the nodes outside v’s 1-
neighborhood graph; the betweeness is the ratio of the 
number of paired nodes whose shortest path must go 
through node v to the total number of node pairs in v’s 1-
neighborhood graph. 

 
Testing: 

Random walks are used for testing. The random walk 
(RW) is known as a useful tool to obtain the steady state 
distribution for a graph, referred to as the topological 
signatures, which provide the foundation for the 
approximate matching. Specifically, given graph G = (V 
(G), E (G)), where V (G) = {u1, u |V (G)|}. A RW on G 
allows the probability puj(t) of a node uj ∈ V (G) being 
located at time t to be computed with Eq. 1: 

 

 
Fig 10: Probability of locating a node at a time 

 
where |V (G)| is the number of nodes in G, |N(uj)| is the 

number of one-hop neighbours for node uj, and d is the 
damping factor which defines the probability of directly 
jumping or traversing. For Eq. 1, the first part relates to the 
probability of moving from node ui to uj by jumping 
directly, while node ui is not a one-hop neighbour of uj; the 
second part relates to the probability by traversing the edge 
from u to uj, while node ui is a one-hop neighbour of uj. 
Therefore, the probability distribution on all nodes in G, 
denoted as a vector p (t) = [pu1 (t), pu|V (G)|(t)], can be 
calculated with Eq. 2: 

 

 
Fig 11: Probability distribution function of the nodes 

 
Where W = (θA)’, A being the adjacency matrix of the 

graph and θ the diagonal matrix whose diagonal element is 
1 |N(ui)| ; I is a vector whose entries are all equal to one. 

 
Anonymization: 

Suppose that there are m groups, g1,...,gm, where each 
group size is assumed to be at least equal to k. For each 
group, if any pair of nodes are not approximately matching, 
we use a heuristic anonymization algorithm to make the 1- 
neighbourhood graphs approximately match as follows: 
Initially, the candidate group set (CGS) consists of m 
groups. We sort groups in descending order of the number 
of neighbours, pick the first one as the processing group, 

and remove it from CGS. For each node in the processing 
group, we construct its 1-neighborhood graph, and use RW 
to calculate related topological signatures. Then, for any 
pair of nodes u and v, we use Eq. 5 to calculate the cost of 
matching their 1-neighborhood graphs. For any pair of 
nodes, if this cost is smaller than a threshold value α, we 
choose the next grouping in CGS as the processing group 
and do it again. 

Otherwise, we modify 1-neighborhood graphs of the 
nodes in the processing group as follows: We first choose a 
random node u in the group as the group seed. For any 
other node v in this group, if the related cost cost(Gu,Gv) is 
larger than α, we approach the structure of Gu to that of Gv 
with probability q, and approach the structure of Gv to that 
Gu with probability 1−q. This process will continue until, 
for any pair of nodes in the processing group, the cost for 
matching their 1-neighborhood graphs is equal to or smaller 
than α. The anonymization process may be recursive, since 
some changes may impact the groups that have been 
processed previously. However, due to the power-law node 
distribution, and the small world phenomenon, this process 
will rapidly stop. 

To approach the structure of Gv = (Vv,Ev) to that of Gu 
= (Vu,Eu), we first obtain the optimal matching of nodes in 
two graphs. In the optimal matching, for any pair of nodes x 
∈  Vv and w ∈  Vu, if cost(x,w) >α , we make u’s 
connections the same as those of v. During the approaching 
process, we make sure that the structure of Gu will not be 
modified. 

 
Randomization: 

Consider a graph G = (V (G), E (G)) and a 
randomization probability p. We first randomly remove 
p(|E(G)|) edges from G, and then for two nodes that are not 
linked, we add an edge with probability p. The key problem 
lies in determining p to randomize the graph. 

IV.  CONCLUSION 

We address the issues Data ownership and group 
management, Outsourcing data to a cluster of machines, 
Outsourcing social networks to cloud by the above 
mentioned techniques.  
     To address data ownership and group management, we 
design a secure data sharing scheme for dynamic groups in 
an untrusted cloud. In this scheme, a user is able to share 
data with others in the group without revealing identity 
privacy to the cloud. Additionally, the scheme supports 
efficient user revocation and new user joining. More 
specially, efficient user revocation can be achieved through 
a public revocation list without updating the private keys of 
the remaining users, and new users can directly decrypt 
files stored in the cloud before their participation.  
     By using Parallel Homomorphic Encryption we can 
ensure the data integrity and data error localization. PHE 
schemes can be used to evaluate several functionalities such 
as keyword search, set membership testing and disjunctions.  
     Using Heuristic Indistinguishable Group Anonymization 
(HIGA) scheme to anonymize social networks is an 
effective security measure and that it doesn’t compromise 
query answer accuracy 
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